(相關(guān)資料圖)

1、聚點(diǎn)和邊界點(diǎn)的定義:2、從平面幾何上分析:(1)第一種情形:聚點(diǎn):設(shè)C1為不含邊界的點(diǎn)的集合,即sqrt(x^2+y^2)<R,任取C1邊界上一點(diǎn)A的去心鄰域,Uo(A,r),無論r多么小,C2中總有屬于C1的點(diǎn),稱A為C1的聚點(diǎn)。

2、邊界點(diǎn):設(shè)C1為不含邊界的點(diǎn)的集合,即sqrt(x^2+y^2)<R,任取C1邊界上一點(diǎn)A的去心鄰域,Uo(A,r),無論r多么小,C2中既有屬于C1的點(diǎn),又含不屬于C1的點(diǎn),稱A為C1的邊界點(diǎn)。

3、(2)第二種情形:聚點(diǎn):設(shè)C1為不含邊界的點(diǎn)的集合,即sqrt(x^2+y^2)<R,任取C1內(nèi)一點(diǎn)A的去心鄰域,Uo(A,r),無論r多么小,無論A點(diǎn)多么靠近邊界,A不在邊界上,C2中總有屬于C1的點(diǎn),稱A為C1的聚點(diǎn)邊界點(diǎn):設(shè)C1為不含邊界的點(diǎn)的集合,即sqrt(x^2+y^2)<R,任取C1內(nèi)一點(diǎn)A的去心領(lǐng)域,Uo(A,r),無論r多么小,無論A點(diǎn)多么靠近邊界,A不在邊界上,根據(jù)定義C2中沒有不屬于C1的點(diǎn),所以A不是C1的邊界點(diǎn)。

本文就為大家分享到這里,希望小伙伴們會喜歡。

標(biāo)簽: